Jesús Santos Del Cerro, Sonia De Paz Cobo
Datos técnicos
Este libro constituye un compendio de estudios estructurados acerca de distintos aspectos de carácter histórico y conceptual relativos al Cálculo de Probabilidades y la Estadística. En la presente obra se recogen las aportaciones presentadas en el XII Congreso Internacional de Historia de la Estadística y de la Probabilidad, celebrado en la ciudad de Sevilla y organizadas por la Asociación de Historia de la Estadística y de la Probabilidad de España (AHEPE). El contenido del libro trata cuestiones tanto biográficas como conceptuales y se destacan nombres como los de Gauss, Karl Pearson, Pascal, Fermat, Leibniz, Lambert, Simpson, Condorcet, etc. Se tratan temas relacionados con el origen y desarrollos de la Estadística y el Cálculo de Probabilidades hasta la actualidad.
Se destaca la contribución de las Relaciones Topográficas de Felipe II como precedente español de la elaboración de Estadísticas oficiales. Se incluyen las trayectorias de las primeras mujeres españolas que se dedicaron a la enseñanza universitaria de la Estadística y las más relevantes que les sucedieron. Resultan de notable interés las contribuciones que sobre la Estadística y el Cálculo de Probabilidades supusieron autores e instituciones como Condorcet, la Escuela Biométrica de Karl Pearson o los Laboratorios Bell. Especial mención cabe hacer sobre la descripción de las contribuciones realizadas en los doce congresos internacionales, organizados por la Asociación de Historia de la Estadística y de la Probabilidad de España (AHEPE), por su actual Presidente, el profesor Miguel Ángel Gómez Villegas.
CAPÍTULO I
L’HUMANITE FACE A L’EMPIRE DU HASARD SELON CONDORCET
ÉRIC BRIAN
1.L’ouvrage et son auteur
2.Élements de l’oeuvre scientifique de Condorcet utiles pour notre propos
3.L’esquisse et le tableau historique
4.Une metaphysique
5.Une logique historique
6.Le propre des temps modernes
7.Les temps futurs
8.Un salut aux generations futures
9.Il faut lire l’esquisse a l’envers
10.Une epistemologie stochastique
CAPÍTULO II
MI TRAYECTORIA EN AHEPE: UNA APROXIMACIÓN SUBJETIVA
MIGUEL Á. GÓMEZ VILLEGAS
1.Introducción
2.Aportaciones en la segunda mitad de la existencia de AHEPE
3.Los dos últimos AHEPE desde Besançon hasta Jerez de la Frontera
4.Referencias
CAPÍTULO III
LAS RELACIONES GEOGRÁFICO-ESTADÍSTICAS DE FELIPE II
JOSÉ M. ARRIBAS MACHO
1.Introducción
2.Cuestionarios y procedimiento
3.Los temas que abordan
4.Tres casos concretos
Alcobendas
Coslada
Velilla de san antonio
5.Algunas conclusiones
6.Bibliografía
CAPÍTULO IV
LAS RELACIONES TOPOGRÁFICAS DE FELIPE II: EN EL ORIGEN DE LA ESTADÍSTICA MODERNA
JESÚS SANTOS DEL CERRO
1.Introducción
2.Relaciones Topográficas de Felipe II
Averiguaciones de Castilla (Carlos V), precedente de las Relaciones Topográficas (Felipe II)
Descripción de la Relaciones Topográficas
Cuestionario 1575
Cuestionario 1578
3.Referencias bibliográficas
CAPÍTULO V
LA CORRESPONDENCIA ENTRE PASCAL Y FERMAT SOBRE EL CÁLCULO DE LOS PARTIS
MARY SOL DE MORA CHARLES
Referencias
CAPÍTULO VI
EL EMPLEO DE LA MEDIA COMO ESTIMADOR SEGÚN SIMPSON
M.ª DOLORES PÉREZ HIDALGO
JOSÉ ANTONIO CAMÚÑEZ RUIZ
JAVIER SÁNCHEZ-RIVAS GARCÍA
1.Introducción
1.1. Sobre el error de una medición
2.Desarrollo
3.Conclusiones
4.Referencias
CAPÍTULO VII
UNA APROXIMACIÓN A LA APORTACIÓN DE J. H. LAMBERT (1728-1777) A LA INFERENCIA ESTADÍSTICA
ÁFRICA RUIZ GÁNDARA
MAGDALA PÉREZ NIMO
1.Introducción
2.Principales aportaciones a la estadística
2.1. Una aproximación al método de la máxima verosimilitud
2.2. Ajuste de curvas numérica y gráficamente
3.Conclusiones
4.Referencias
CAPÍTULO VIII
LA MEMORIA DE GAUSS SOBRE LA TEORÍA DE LA COMBINACIÓN DE OBSERVACIONES
M.ª DEL CARMEN ESCRIBANO RÓDENAS
GABRIELA M. FERNÁNDEZ BARBERIS
ANTONIO FRANCO RODRÍGUEZ DE LÁZARO
1.Introducción
2.Notas biográficas
3.El método de los mínimos cuadrados
4.Teoría de la combinación de observaciones: primera parte
5.Teoría de la combinación de observaciones: segunda parte
6.Teoría de la combinación de observaciones: suplemento
7.Conclusiones
8.Referencias
CAPÍTULO IX
DE LA ESCUELA BIOMÉTRICA DE KARL PEARSON (1857-1936) A LA ESCUELA DE ESTADÍSTICA MÉDICA DE MAJOR GREENWOOD (1880-1949)
JOSÉ ALMENARA BARRIOS
1.Introducción
2.Desarrollo
2.1. Formación, inicios y labor docente de Major Greenwood
2.2. Labor investigadora de Major Greenwood
2.3. Magisterio de Major Greenwood
3.Conclusión
4.Referencias
CAPÍTULO X
KARL PEARSON EN LA PRIMERA MITAD DEL SIGLO XX
RAQUEL IBAR-ALONSO
ANTONIO FRANCO RODRÍGUEZ DE LÁZARO
1.Introducción
2.Contexto histórico
3.Coeficiente de variación
4.Distribución del CV de Pearson
5.Aplicaciones del CV de Pearson
6.Conclusiones
7.Referencias
CAPÍTULO XI
MEDECINE ET PROBABILITÉS DANS LA FRANCE DE LA PREMIÈRE MOITIE DU XIXE SIÈCLE
THIERRY MARTIN
1.Situation a l’aube du XIXe siecle
2.Les probabilites selon Pinel
3.La “methode numerique”
3.1. Pierre Charles Alexandre Louis
3.2. Les Recherches de Jean Civiale
4.La critique du calcul des probabilités par Risueño d’Amador
5.La demarche probabiliste de Jules Gavarret
6.Conclusion
7.References
CAPÍTULO XII
TOO MUCH DATA OR TOO LITTLE DATA SOME HISTORICAL SKETCHES
MICHEL ARMATTE
JEAN-JACQUES DROESBEKE
1.Introduction
2.Information systems
3.The astronomical error
4.Statistics and social surveys
5.Quetelet shakes up the landscape
6.Some arguments against Quetelet: Le Play, Venn and Rumelin
7.Eugenics or hygienics
8.Birth of the sample (Bowley, Fisher and Gosset)
9.Data analysis, big data, algorithms
10.Conclusions
11.Bibliography
CAPÍTULO XIII
STATISTIQUE, PROGRES, JUSTICE ET PAIX
JEAN-PIERRE BEAUD
1.Introduction
2.Trois moments
3.1913: une avant-guerre où tout semble possible
4.Objectifs
5.Les contributeurs du livre
6.Le monument Koren
7.La statistique, plus que jamais
8.Pour la paix, la justice universelle et le progrès pour tous
9.Conclusion
10.References
CAPÍTULO XIV
ESTADÍSTICAS ESCOLARES: TESTIMONIOS DEL ESTADO DE LA EDUCACIÓN ESPAÑOLA EN EL SIGLO XIX
ANA I. BUSTO CABALLERO
M.ª DEL CARMEN ESCRIBANO RÓDENAS
1.Introducción
2.Estadísticas escolares de la primera mitad del siglo XIX
3.Estadísticas escolares de la segunda mitad del siglo XIX
4.Estadística de Primera Enseñanza 1850-1855
5.Estadística de Primera Enseñanza 1865-1870
6.Comparación de los datos de distintas estadísticas del siglo XIX
7.Conclusiones
8.Referencias
CAPÍTULO XV
LA ESTADÍSTICA Y LOS LABORATORIOS BELL: UNA HISTORIA DE ÉXITO
GABRIEL RUIZ GARZÓN
1.Los laboratorios Bell
2.Walter Shewhart
3.Joseph Kruskal
4.Claude Shannon
5.John W. Tukey
6.Figuras recientes
7.Conclusiones
8.Referencias
CAPÍTULO XVI
ALGUNOS HITOS IMPORTANTES EN EL DESARROLLO HISTÓRICO DE LA MEDIANA
CRISTINA CAMÚÑEZ DÍAZ
MARÍA DE LA SIERRA REY TIENDA
1.Introducción
2.Desarrollo
2.1. El Talmud
2.2. Edward Wright (1561-1615)
2.3. Christiaan Huygens (1629-1695)
2.4. Roger Joseph Boscovich (1711-1787)
2.5. Antoine Augustin Cournot (1801-1877)
3.Conclusiones
4.Referencias
CAPÍTULO XVII
ALGUNAS MUJERES ESTADÍSTICAS ESPAÑOLAS
MAGDALENA JÁÑEZ VAZ
JUAN NÚÑEZ VALDÉS
CRISTINA TOBAR FERNÁNDEZ
1.Introducción
2.Ana Fernández Militino: algunos aspectos notables de su biografía
3.Montserrat Fuentes: algunos aspectos destacados de su biografía
4.Montserrat Guillén: algunos aspectos destacados de su biografía
5.María Dolores Ugarte Martínez: algunos aspectos significativos de su biografía
6.Breves notas biográficas de otras mujeres españolas dedicadas a la estadística
7.Referencias
CAPÍTULO XVIII
PILAR IBARROLA MUÑOZ, LA PRIMERA MUJER ESPAÑOLA DOCTORA EN ESTADÍSTICA
INÉS MORA CARO
JUAN NÚÑEZ VALDÉS
1.Introducción
2.Breve sinopsis de las primeras mujeres universitarias españolas
3.Pilar Ibarrola Muñoz: datos relevantes de su biografía
Notas
4.Conclusiones
Agradecimientos
5.Referencias
CAPÍTULO XIX
MARÍA DOLORES BERMUDO RUIZ, LA PRIMERA MUJER QUE IMPARTIÓ ASIGNATURAS DE ESTADÍSTICA EN LA UNIVERSIDAD DE SEVILLA
FRANCISCO MARTÍN BERNÁ
PABLO MARTÍN BERNÁ
JUAN NÚÑEZ VALDÉS
1.Introducción
2.Breve historia del Departamento de Estadística e Investigación Operativa de la Facultad de Matemáticas de la Universidad de Sevilla
3.María Dolores Bermudo Ruiz: Su biografía
Apéndice 1
Agradecimientos
4.Referencias
CAPÍTULO XX
TÉCNICAS DE SIMULACIÓN EN LA TOMA DE DECISIONES
ROBERTO MORALES ARSENAL
1.Introducción
2.Técnicas de simulación
3.El experimento de Buffon – aproximando el valor de π
4.La distribución t-Student
5.John von Neuwmann
6.Stanislaw Marcin Ulam
7.Keith Douglas Tocher
8.Nassim Nicholas Taleb
9.Bibliografía
2024 © Vuestros Libros Siglo XXI | Desarrollo Web Factor Ideas